Skip to main content

AVM Transaction Format

This file is meant to be the single source of truth for how we serialize transactions in the Avalanche Virtual Machine (AVM). This document uses the primitive serialization format for packing and secp256k1 for cryptographic user identification.

Codec ID​

Some data is prepended with a codec ID (unt16) that denotes how the data should be deserialized. Right now, the only valid codec ID is 0 (0x00 0x00).

Transferable Output​

Transferable outputs wrap an output with an asset ID.

What Transferable Output Contains​

A transferable output contains an AssetID and an Output.

  • AssetID is a 32-byte array that defines which asset this output references.
  • Output is an output, as defined below. For example, this can be a SECP256K1 transfer output.

Gantt Transferable Output Specification​

+----------+----------+-------------------------+
| asset_id : [32]byte | 32 bytes |
+----------+----------+-------------------------+
| output : Output | size(output) bytes |
+----------+----------+-------------------------+
| 32 + size(output) bytes |
+-------------------------+

Proto Transferable Output Specification​

message TransferableOutput {
bytes asset_id = 1; // 32 bytes
Output output = 2; // size(output)
}

Transferable Output Example​

Let’s make a transferable output:

  • AssetID: 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
  • Output: "Example SECP256K1 Transfer Output from below"
[
AssetID <- 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
Output <- 0x000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859,
]
=
[
// assetID:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
// output:
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

Transferable Input​

Transferable inputs describe a specific UTXO with a provided transfer input.

What Transferable Input Contains​

A transferable input contains a TxID, UTXOIndex AssetID and an Input.

  • TxID is a 32-byte array that defines which transaction this input is consuming an output from. Transaction IDs are calculated by taking sha256 of the bytes of the signed transaction.
  • UTXOIndex is an int that defines which utxo this input is consuming in the specified transaction.
  • AssetID is a 32-byte array that defines which asset this input references.
  • Input is an input, as defined below. This can currently only be a SECP256K1 transfer input

Gantt Transferable Input Specification​

+------------+----------+------------------------+
| tx_id : [32]byte | 32 bytes |
+------------+----------+------------------------+
| utxo_index : int | 04 bytes |
+------------+----------+------------------------+
| asset_id : [32]byte | 32 bytes |
+------------+----------+------------------------+
| input : Input | size(input) bytes |
+------------+----------+------------------------+
| 68 + size(input) bytes |
+------------------------+

Proto Transferable Input Specification​

message TransferableInput {
bytes tx_id = 1; // 32 bytes
uint32 utxo_index = 2; // 04 bytes
bytes asset_id = 3; // 32 bytes
Input input = 4; // size(input)
}

Transferable Input Example​

Let’s make a transferable input:

  • TxID: 0xf1e1d1c1b1a191817161514131211101f0e0d0c0b0a090807060504030201000
  • UTXOIndex: 5
  • AssetID: 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
  • Input: "Example SECP256K1 Transfer Input from below"
[
TxID <- 0xf1e1d1c1b1a191817161514131211101f0e0d0c0b0a090807060504030201000
UTXOIndex <- 0x00000005
AssetID <- 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
Input <- 0x0000000500000000075bcd15000000020000000700000003
]
=
[
// txID:
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
// utxoIndex:
0x00, 0x00, 0x00, 0x05,
// assetID:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
// input:
0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,
0x07, 0x5b, 0xcd, 0x15, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x07
]

Transferable Op​

Transferable operations describe a set of UTXOs with a provided transfer operation. Only one Asset ID is able to be referenced per operation.

What Transferable Op Contains​

A transferable operation contains an AssetID, UTXOIDs, and a TransferOp.

  • AssetID is a 32-byte array that defines which asset this operation changes.
  • UTXOIDs is an array of TxID-OutputIndex tuples. This array must be sorted in lexicographical order.
  • TransferOp is a transferable operation object.

Gantt Transferable Op Specification​

+-------------+------------+------------------------------+
| asset_id : [32]byte | 32 bytes |
+-------------+------------+------------------------------+
| utxo_ids : []UTXOID | 4 + 36 * len(utxo_ids) bytes |
+-------------+------------+------------------------------+
| transfer_op : TransferOp | size(transfer_op) bytes |
+-------------+------------+------------------------------+
| 36 + 36 * len(utxo_ids) |
| + size(transfer_op) bytes |
+------------------------------+

Proto Transferable Op Specification​

message UTXOID {
bytes tx_id = 1; // 32 bytes
uint32 utxo_index = 2; // 04 bytes
}
message TransferableOp {
bytes asset_id = 1; // 32 bytes
repeated UTXOID utxo_ids = 2; // 4 + 36 * len(utxo_ids) bytes
TransferOp transfer_op = 3; // size(transfer_op)
}

Transferable Op Example​

Let’s make a transferable operation:

  • AssetID: 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
  • UTXOIDs:
    • UTXOID:
      • TxID: 0xf1e1d1c1b1a191817161514131211101f0e0d0c0b0a090807060504030201000
      • UTXOIndex: 5
  • Op: "Example Transfer Op from below"
[
AssetID <- 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
UTXOIDs <- [
{
TxID:0xf1e1d1c1b1a191817161514131211101f0e0d0c0b0a090807060504030201000
UTXOIndex:5
}
]
Op <- 0x0000000d0000000200000003000000070000303900000003431100000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859
]
=
[
// assetID:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
// number of utxoIDs:
0x00, 0x00, 0x00, 0x01,
// txID:
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
// utxoIndex:
0x00, 0x00, 0x00, 0x05,
// op:
0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x03,
0x43, 0x11, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61, 0xfb,
0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8, 0x34,
0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55, 0xc3,
0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e, 0xde,
0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89, 0x43,
0xab, 0x08, 0x59,
]

Outputs​

Outputs have four possible types: SECP256K1TransferOutput, SECP256K1MintOutput, NFTTransferOutput and NFTMintOutput.

SECP256K1 Transfer Output​

A secp256k1 transfer output allows for sending a quantity of an asset to a collection of addresses after a specified unix time.

What SECP256K1 Transfer Output Contains​

A secp256k1 transfer output contains a TypeID, Amount, Locktime, Threshold, and Addresses.

  • TypeID is the ID for this output type. It is 0x00000007.
  • Amount is a long that specifies the quantity of the asset that this output owns. Must be positive.
  • Locktime is a long that contains the unix timestamp that this output can be spent after. The unix timestamp is specific to the second.
  • Threshold is an int that names the number of unique signatures required to spend the output. Must be less than or equal to the length of Addresses. If Addresses is empty, must be 0.
  • Addresses is a list of unique addresses that correspond to the private keys that can be used to spend this output. Addresses must be sorted lexicographically.

Gantt SECP256K1 Transfer Output Specification​

+-----------+------------+--------------------------------+
| type_id : int | 4 bytes |
+-----------+------------+--------------------------------+
| amount : long | 8 bytes |
+-----------+------------+--------------------------------+
| locktime : long | 8 bytes |
+-----------+------------+--------------------------------+
| threshold : int | 4 bytes |
+-----------+------------+--------------------------------+
| addresses : [][20]byte | 4 + 20 * len(addresses) bytes |
+-----------+------------+--------------------------------+
| 28 + 20 * len(addresses) bytes |
+--------------------------------+

Proto SECP256K1 Transfer Output Specification​

message SECP256K1TransferOutput {
uint32 typeID = 1; // 04 bytes
uint64 amount = 2; // 08 bytes
uint64 locktime = 3; // 08 bytes
uint32 threshold = 4; // 04 bytes
repeated bytes addresses = 5; // 04 bytes + 20 bytes * len(addresses)
}

SECP256K1 Transfer Output Example​

Let’s make a secp256k1 transfer output with:

  • TypeID: 7
  • Amount: 12345
  • Locktime: 54321
  • Threshold: 1
  • Addresses:
  • 0x51025c61fbcfc078f69334f834be6dd26d55a955
  • 0xc3344128e060128ede3523a24a461c8943ab0859
[
TypeID <- 0x00000007
Amount <- 0x0000000000003039
Locktime <- 0x000000000000d431
Threshold <- 0x00000001
Addresses <- [
0x51025c61fbcfc078f69334f834be6dd26d55a955,
0xc3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// typeID:
0x00, 0x00, 0x00, 0x07,
// amount:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39,
// locktime:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
// threshold:
0x00, 0x00, 0x00, 0x01,
// number of addresses:
0x00, 0x00, 0x00, 0x02,
// addrs[0]:
0x51, 0x02, 0x5c, 0x61, 0xfb, 0xcf, 0xc0, 0x78,
0xf6, 0x93, 0x34, 0xf8, 0x34, 0xbe, 0x6d, 0xd2,
0x6d, 0x55, 0xa9, 0x55,
// addrs[1]:
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

SECP256K1 Mint Output​

A secp256k1 mint output is an output that is owned by a collection of addresses.

What SECP256K1 Mint Output Contains​

A secp256k1 Mint output contains a TypeID, Locktime, Threshold, and Addresses.

  • TypeID is the ID for this output type. It is 0x00000006.
  • Locktime is a long that contains the unix timestamp that this output can be spent after. The unix timestamp is specific to the second.
  • Threshold is an int that names the number of unique signatures required to spend the output. Must be less than or equal to the length of Addresses. If Addresses is empty, must be 0.
  • Addresses is a list of unique addresses that correspond to the private keys that can be used to spend this output. Addresses must be sorted lexicographically.

Gantt SECP256K1 Mint Output Specification​

+-----------+------------+--------------------------------+
| type_id : int | 4 bytes |
+-----------+------------+--------------------------------+
| locktime : long | 8 bytes |
+-----------+------------+--------------------------------+
| threshold : int | 4 bytes |
+-----------+------------+--------------------------------+
| addresses : [][20]byte | 4 + 20 * len(addresses) bytes |
+-----------+------------+--------------------------------+
| 20 + 20 * len(addresses) bytes |
+--------------------------------+

Proto SECP256K1 Mint Output Specification​

message SECP256K1MintOutput {
uint32 typeID = 1; // 04 bytes
uint64 locktime = 2; // 08 bytes
uint32 threshold = 3; // 04 bytes
repeated bytes addresses = 4; // 04 bytes + 20 bytes * len(addresses)
}

SECP256K1 Mint Output Example​

Let’s make a SECP256K1 mint output with:

  • TypeID: 6
  • Locktime: 54321
  • Threshold: 1
  • Addresses:
  • 0x51025c61fbcfc078f69334f834be6dd26d55a955
  • 0xc3344128e060128ede3523a24a461c8943ab0859
[
TypeID <- 0x00000006
Locktime <- 0x000000000000d431
Threshold <- 0x00000001
Addresses <- [
0x51025c61fbcfc078f69334f834be6dd26d55a955,
0xc3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// typeID:
0x00, 0x00, 0x00, 0x06,
// locktime:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
// threshold:
0x00, 0x00, 0x00, 0x01,
// number of addresses:
0x00, 0x00, 0x00, 0x02,
// addrs[0]:
0x51, 0x02, 0x5c, 0x61, 0xfb, 0xcf, 0xc0, 0x78,
0xf6, 0x93, 0x34, 0xf8, 0x34, 0xbe, 0x6d, 0xd2,
0x6d, 0x55, 0xa9, 0x55,
// addrs[1]:
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

NFT Transfer Output​

An NFT transfer output is an NFT that is owned by a collection of addresses.

What NFT Transfer Output Contains​

An NFT transfer output contains a TypeID, GroupID, Payload, Locktime, Threshold, and Addresses.

  • TypeID is the ID for this output type. It is 0x0000000b.
  • GroupID is an int that specifies the group this NFT was issued with.
  • Payload is an arbitrary string of bytes no long longer than 1024 bytes.
  • Locktime is a long that contains the unix timestamp that this output can be spent after. The unix timestamp is specific to the second.
  • Threshold is an int that names the number of unique signatures required to spend the output. Must be less than or equal to the length of Addresses. If Addresses is empty, must be 0.
  • Addresses is a list of unique addresses that correspond to the private keys that can be used to spend this output. Addresses must be sorted lexicographically.

Gantt NFT Transfer Output Specification​

+-----------+------------+-------------------------------+
| type_id : int | 4 bytes |
+-----------+------------+-------------------------------+
| group_id : int | 4 bytes |
+-----------+------------+-------------------------------+
| payload : []byte | 4 + len(payload) bytes |
+-----------+------------+-------------------------------+
| locktime : long | 8 bytes |
+-----------+------------+-------------------------------+
| threshold : int | 4 bytes |
+-----------+------------+-------------------------------+
| addresses : [][20]byte | 4 + 20 * len(addresses) bytes |
+-----------+------------+-------------------------------+
| 28 + len(payload) |
| + 20 * len(addresses) bytes |
+-------------------------------+

Proto NFT Transfer Output Specification​

message NFTTransferOutput {
uint32 typeID = 1; // 04 bytes
uint32 group_id = 2; // 04 bytes
bytes payload = 3; // 04 bytes + len(payload)
uint64 locktime = 4 // 08 bytes
uint32 threshold = 5; // 04 bytes
repeated bytes addresses = 6; // 04 bytes + 20 bytes * len(addresses)
}

NFT Transfer Output Example​

Let’s make an NFT transfer output with:

  • TypeID: 11
  • GroupID: 12345
  • Payload: 0x431100
  • Locktime: 54321
  • Threshold: 1
  • Addresses:
  • 0x51025c61fbcfc078f69334f834be6dd26d55a955
  • 0xc3344128e060128ede3523a24a461c8943ab0859
[
TypeID <- 0x0000000b
GroupID <- 0x00003039
Payload <- 0x431100
Locktime <- 0x000000000000d431
Threshold <- 0x00000001
Addresses <- [
0x51025c61fbcfc078f69334f834be6dd26d55a955,
0xc3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// TypeID:
0x00, 0x00, 0x00, 0x0b,
// groupID:
0x00, 0x00, 0x30, 0x39,
// length of payload:
0x00, 0x00, 0x00, 0x03,
// payload:
0x43, 0x11, 0x00,
// locktime:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
// threshold:
0x00, 0x00, 0x00, 0x01,
// number of addresses:
0x00, 0x00, 0x00, 0x02,
// addrs[0]:
0x51, 0x02, 0x5c, 0x61, 0xfb, 0xcf, 0xc0, 0x78,
0xf6, 0x93, 0x34, 0xf8, 0x34, 0xbe, 0x6d, 0xd2,
0x6d, 0x55, 0xa9, 0x55,
// addrs[1]:
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

NFT Mint Output​

An NFT mint output is an NFT that is owned by a collection of addresses.

What NFT Mint Output Contains​

An NFT Mint output contains a TypeID, GroupID, Locktime, Threshold, and Addresses.

  • TypeID is the ID for this output type. It is 0x0000000a.
  • GroupID is an int that specifies the group this NFT is issued to.
  • Locktime is a long that contains the unix timestamp that this output can be spent after. The unix timestamp is specific to the second.
  • Threshold is an int that names the number of unique signatures required to spend the output. Must be less than or equal to the length of Addresses. If Addresses is empty, must be 0.
  • Addresses is a list of unique addresses that correspond to the private keys that can be used to spend this output. Addresses must be sorted lexicographically.

Gantt NFT Mint Output Specification​

+-----------+------------+--------------------------------+
| type_id : int | 4 bytes |
+-----------+------------+--------------------------------+
| group_id : int | 4 bytes |
+-----------+------------+--------------------------------+
| locktime : long | 8 bytes |
+-----------+------------+--------------------------------+
| threshold : int | 4 bytes |
+-----------+------------+--------------------------------+
| addresses : [][20]byte | 4 + 20 * len(addresses) bytes |
+-----------+------------+--------------------------------+
| 24 + 20 * len(addresses) bytes |
+--------------------------------+

Proto NFT Mint Output Specification​

message NFTMintOutput {
uint32 typeID = 1; // 04 bytes
uint32 group_id = 2; // 04 bytes
uint64 locktime = 3; // 08 bytes
uint32 threshold = 4; // 04 bytes
repeated bytes addresses = 5; // 04 bytes + 20 bytes * len(addresses)
}

NFT Mint Output Example​

Let’s make an NFT mint output with:

  • TypeID: 10
  • GroupID: 12345
  • Locktime: 54321
  • Threshold: 1
  • Addresses:
  • 0x51025c61fbcfc078f69334f834be6dd26d55a955
  • 0xc3344128e060128ede3523a24a461c8943ab0859
[
TypeID <- 0x0000000a
GroupID <- 0x00003039
Locktime <- 0x000000000000d431
Threshold <- 0x00000001
Addresses <- [
0x51025c61fbcfc078f69334f834be6dd26d55a955,
0xc3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// TypeID
0x00, 0x00, 0x00, 0x0a,
// groupID:
0x00, 0x00, 0x30, 0x39,
// locktime:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
// threshold:
0x00, 0x00, 0x00, 0x01,
// number of addresses:
0x00, 0x00, 0x00, 0x02,
// addrs[0]:
0x51, 0x02, 0x5c, 0x61, 0xfb, 0xcf, 0xc0, 0x78,
0xf6, 0x93, 0x34, 0xf8, 0x34, 0xbe, 0x6d, 0xd2,
0x6d, 0x55, 0xa9, 0x55,
// addrs[1]:
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

Inputs​

Inputs have one possible type: SECP256K1TransferInput.

SECP256K1 Transfer Input​

A secp256k1 transfer input allows for spending an unspent secp256k1 transfer output.

What SECP256K1 Transfer Input Contains​

A secp256k1 transfer input contains an Amount and AddressIndices.

  • TypeID is the ID for this input type. It is 0x00000005.
  • Amount is a long that specifies the quantity that this input should be consuming from the UTXO. Must be positive. Must be equal to the amount specified in the UTXO.
  • AddressIndices is a list of unique ints that define the private keys that are being used to spend the UTXO. Each UTXO has an array of addresses that can spend the UTXO. Each int represents the index in this address array that will sign this transaction. The array must be sorted low to high.

Gantt SECP256K1 Transfer Input Specification​

+-------------------------+-------------------------------------+
| type_id : int | 4 bytes |
+-----------------+-------+-------------------------------------+
| amount : long | 8 bytes |
+-----------------+-------+-------------------------------------+
| address_indices : []int | 4 + 4 * len(address_indices) bytes |
+-----------------+-------+-------------------------------------+
| 16 + 4 * len(address_indices) bytes |
+-------------------------------------+

Proto SECP256K1 Transfer Input Specification​

message SECP256K1TransferInput {
uint32 typeID = 1; // 04 bytes
uint64 amount = 2; // 08 bytes
repeated uint32 address_indices = 3; // 04 bytes + 04 bytes * len(address_indices)
}

SECP256K1 Transfer Input Example​

Let’s make a payment input with:

  • TypeId: 5
  • Amount: 123456789
  • AddressIndices: [3,7]
[
TypeID <- 0x00000005
Amount <- 123456789 = 0x00000000075bcd15,
AddressIndices <- [0x00000003, 0x00000007]
]
=
[
// type id:
0x00, 0x00, 0x00, 0x05,
// amount:
0x00, 0x00, 0x00, 0x00, 0x07, 0x5b, 0xcd, 0x15,
// length:
0x00, 0x00, 0x00, 0x02,
// sig[0]
0x00, 0x00, 0x00, 0x03,
// sig[1]
0x00, 0x00, 0x00, 0x07,
]

Operations​

Operations have three possible types: SECP256K1MintOperation, NFTMintOp, and NFTTransferOp.

SECP256K1 Mint Operation​

A secp256k1 mint operation consumes a SECP256K1 mint output, creates a new mint output and sends a transfer output to a new set of owners.

What SECP256K1 Mint Operation Contains​

A secp256k1 Mint operation contains a TypeID, AddressIndices, MintOutput, and TransferOutput.

  • TypeID is the ID for this output type. It is 0x00000008.
  • AddressIndices is a list of unique ints that define the private keys that are being used to spend the UTXO. Each UTXO has an array of addresses that can spend the UTXO. Each int represents the index in this address array that will sign this transaction. The array must be sorted low to high.
  • MintOutput is a SECP256K1 Mint output.
  • TransferOutput is a SECP256K1 Transfer output.

Gantt SECP256K1 Mint Operation Specification​

+----------------------------------+------------------------------------+
| type_id : int | 4 bytes |
+----------------------------------+------------------------------------+
| address_indices : []int | 4 + 4 * len(address_indices) bytes |
+----------------------------------+------------------------------------+
| mint_output : MintOutput | size(mint_output) bytes |
+----------------------------------+------------------------------------+
| transfer_output : TransferOutput | size(transfer_output) bytes |
+----------------------------------+------------------------------------+
| 8 + 4 * len(address_indices) |
| + size(mint_output) |
| + size(transfer_output) bytes |
+------------------------------------+

Proto SECP256K1 Mint Operation Specification​

message SECP256K1MintOperation {
uint32 typeID = 1; // 4 bytes
repeated uint32 address_indices = 2; // 04 bytes + 04 bytes * len(address_indices)
MintOutput mint_output = 3; // size(mint_output
TransferOutput transfer_output = 4; // size(transfer_output)
}

SECP256K1 Mint Operation Example​

Let’s make a secp256k1 mint operation with:

  • TypeId: 8
  • AddressIndices:
  • 0x00000003
  • 0x00000007
  • MintOutput: "Example SECP256K1 Mint Output from above"
  • TransferOutput: "Example SECP256K1 Transfer Output from above"
[
TypeID <- 0x00000008
AddressIndices <- [0x00000003, 0x00000007]
MintOutput <- 0x00000006000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c89
TransferOutput <- 0x000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859
]
=
[
// typeID
0x00, 0x00, 0x00, 0x08,
// number of address_indices:
0x00, 0x00, 0x00, 0x02,
// address_indices[0]:
0x00, 0x00, 0x00, 0x03,
// address_indices[1]:
0x00, 0x00, 0x00, 0x07,
// mint output
0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
// transfer output
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

NFT Mint Op​

An NFT mint operation consumes an NFT mint output and sends an unspent output to a new set of owners.

What NFT Mint Op Contains​

An NFT mint operation contains a TypeID, AddressIndices, GroupID, Payload, and Output of addresses.

  • TypeID is the ID for this operation type. It is 0x0000000c.
  • AddressIndices is a list of unique ints that define the private keys that are being used to spend the UTXO. Each UTXO has an array of addresses that can spend the UTXO. Each int represents the index in this address array that will sign this transaction. The array must be sorted low to high.
  • GroupID is an int that specifies the group this NFT is issued to.
  • Payload is an arbitrary string of bytes no longer than 1024 bytes.
  • Output is not a TransferableOutput, but rather is a locktime, threshold, and an array of unique addresses that correspond to the private keys that can be used to spend this output. Addresses must be sorted lexicographically.

Gantt NFT Mint Op Specification​

+------------------------------+------------------------------------+
| type_id : int | 4 bytes |
+-----------------+------------+------------------------------------+
| address_indices : []int | 4 + 4 * len(address_indices) bytes |
+-----------------+------------+------------------------------------+
| group_id : int | 4 bytes |
+-----------------+------------+------------------------------------+
| payload : []byte | 4 + len(payload) bytes |
+-----------------+------------+------------------------------------+
| outputs : []Output | 4 + size(outputs) bytes |
+-----------------+------------+------------------------------------+
| 20 + |
| 4 * len(address_indices) + |
| len(payload) + |
| size(outputs) bytes |
+------------------------------------+

Proto NFT Mint Op Specification​

message NFTMintOp {
uint32 typeID = 1; // 04 bytes
repeated uint32 address_indices = 2; // 04 bytes + 04 bytes * len(address_indices)
uint32 group_id = 3; // 04 bytes
bytes payload = 4; // 04 bytes + len(payload)
repeated bytes outputs = 5; // 04 bytes + size(outputs)
}

NFT Mint Op Example​

Let’s make an NFT mint operation with:

  • TypeId: 12
  • AddressIndices:
    • 0x00000003
    • 0x00000007
  • GroupID: 12345
  • Payload: 0x431100
  • Locktime: 54321
  • Threshold: 1
  • Addresses:
  • 0xc3344128e060128ede3523a24a461c8943ab0859
[
TypeID <- 0x0000000c
AddressIndices <- [
0x00000003,
0x00000007,
]
GroupID <- 0x00003039
Payload <- 0x431100
Locktime <- 0x000000000000d431
Threshold <- 0x00000001
Addresses <- [
0xc3344128e060128ede3523a24a461c8943ab0859
]
]
=
[
// Type ID
0x00, 0x00, 0x00, 0x0c,
// number of address indices:
0x00, 0x00, 0x00, 0x02,
// address index 0:
0x00, 0x00, 0x00, 0x03,
// address index 1:
0x00, 0x00, 0x00, 0x07,
// groupID:
0x00, 0x00, 0x30, 0x39,
// length of payload:
0x00, 0x00, 0x00, 0x03,
// payload:
0x43, 0x11, 0x00,
// number of outputs:
0x00, 0x00, 0x00, 0x01,
// outputs[0]
// locktime:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
// threshold:
0x00, 0x00, 0x00, 0x01,
// number of addresses:
0x00, 0x00, 0x00, 0x01,
// addrs[0]:
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

NFT Transfer Op​

An NFT transfer operation sends an unspent NFT transfer output to a new set of owners.

What NFT Transfer Op Contains​

An NFT transfer operation contains a TypeID, AddressIndices and an untyped NFTTransferOutput.

  • TypeID is the ID for this output type. It is 0x0000000d.
  • AddressIndices is a list of unique ints that define the private keys that are being used to spend the UTXO. Each UTXO has an array of addresses that can spend the UTXO. Each int represents the index in this address array that will sign this transaction. The array must be sorted low to high.
  • NFTTransferOutput is the output of this operation and must be an NFT Transfer Output. This output doesn’t have the TypeId, because the type is known by the context of being in this operation.

Gantt NFT Transfer Op Specification​

+------------------------------+------------------------------------+
| type_id : int | 4 bytes |
+-----------------+------------+------------------------------------+
| address_indices : []int | 4 + 4 * len(address_indices) bytes |
+-----------------+------------+------------------------------------+
| group_id : int | 4 bytes |
+-----------------+------------+------------------------------------+
| payload : []byte | 4 + len(payload) bytes |
+-----------------+------------+------------------------------------+
| locktime : long | 8 bytes |
+-----------+------------+------------------------------------------+
| threshold : int | 4 bytes |
+-----------------+------------+------------------------------------+
| addresses : [][20]byte | 4 + 20 * len(addresses) bytes |
+-----------------+------------+------------------------------------+
| 36 + len(payload) |
| + 4 * len(address_indices) |
| + 20 * len(addresses) bytes |
+------------------------------------+

Proto NFT Transfer Op Specification​

message NFTTransferOp {
uint32 typeID = 1; // 04 bytes
repeated uint32 address_indices = 2; // 04 bytes + 04 bytes * len(address_indices)
uint32 group_id = 3; // 04 bytes
bytes payload = 4; // 04 bytes + len(payload)
uint64 locktime = 5; // 08 bytes
uint32 threshold = 6; // 04 bytes
repeated bytes addresses = 7; // 04 bytes + 20 bytes * len(addresses)
}

NFT Transfer Op Example​

Let’s make an NFT transfer operation with:

  • TypeID: 13
  • AddressIndices:
  • 0x00000007
  • 0x00000003
  • GroupID: 12345
  • Payload: 0x431100
  • Locktime: 54321
  • Threshold: 1
  • Addresses:
  • 0xc3344128e060128ede3523a24a461c8943ab0859
  • 0x51025c61fbcfc078f69334f834be6dd26d55a955
[
TypeID <- 0x0000000d
AddressIndices <- [
0x00000007,
0x00000003,
]
GroupID <- 0x00003039
Payload <- 0x431100
Locktime <- 0x000000000000d431
Threshold <- 00000001
Addresses <- [
0x51025c61fbcfc078f69334f834be6dd26d55a955,
0xc3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// Type ID
0x00, 0x00, 0x00, 0x0d,
// number of address indices:
0x00, 0x00, 0x00, 0x02,
// address index 0:
0x00, 0x00, 0x00, 0x07,
// address index 1:
0x00, 0x00, 0x00, 0x03,
// groupID:
0x00, 0x00, 0x30, 0x39,
// length of payload:
0x00, 0x00, 0x00, 0x03,
// payload:
0x43, 0x11, 0x00,
// locktime:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
// threshold:
0x00, 0x00, 0x00, 0x01,
// number of addresses:
0x00, 0x00, 0x00, 0x02,
// addrs[0]:
0x51, 0x02, 0x5c, 0x61, 0xfb, 0xcf, 0xc0, 0x78,
0xf6, 0x93, 0x34, 0xf8, 0x34, 0xbe, 0x6d, 0xd2,
0x6d, 0x55, 0xa9, 0x55,
// addrs[1]:
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

Initial State​

Initial state describes the initial state of an asset when it is created. It contains the ID of the feature extension that the asset uses, and a variable length array of outputs that denote the genesis UTXO set of the asset.

What Initial State Contains​

Initial state contains a FxID and an array of Output.

  • FxID is an int that defines which feature extension this state is part of. For SECP256K1 assets, this is 0x00000000. For NFT assets, this is 0x00000001.
  • Outputs is a variable length array of outputs, as defined above.

Gantt Initial State Specification​

+---------------+----------+-------------------------------+
| fx_id : int | 4 bytes |
+---------------+----------+-------------------------------+
| outputs : []Output | 4 + size(outputs) bytes |
+---------------+----------+-------------------------------+
| 8 + size(outputs) bytes |
+-------------------------------+

Proto Initial State Specification​

message InitialState {
uint32 fx_id = 1; // 04 bytes
repeated Output outputs = 2; // 04 + size(outputs) bytes
}

Initial State Example​

Let’s make an initial state:

  • FxID: 0x00000000
  • InitialState: ["Example SECP256K1 Transfer Output from above"]
[
FxID <- 0x00000000
InitialState <- [
0x000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// fxID:
0x00, 0x00, 0x00, 0x00,
// num outputs:
0x00, 0x00, 0x00, 0x01,
// output:
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

Credentials​

Credentials have two possible types: SECP256K1Credential, and NFTCredential. Each credential is paired with an Input or Operation. The order of the credentials match the order of the inputs or operations.

SECP256K1 Credential​

A secp256k1 credential contains a list of 65-byte recoverable signatures.

What SECP256K1 Credential Contains​

  • TypeID is the ID for this type. It is 0x00000009.
  • Signatures is an array of 65-byte recoverable signatures. The order of the signatures must match the input’s signature indices.

Gantt SECP256K1 Credential Specification​

+------------------------------+---------------------------------+
| type_id : int | 4 bytes |
+-----------------+------------+---------------------------------+
| signatures : [][65]byte | 4 + 65 * len(signatures) bytes |
+-----------------+------------+---------------------------------+
| 8 + 65 * len(signatures) bytes |
+---------------------------------+

Proto SECP256K1 Credential Specification​

message SECP256K1Credential {
uint32 typeID = 1; // 4 bytes
repeated bytes signatures = 2; // 4 bytes + 65 bytes * len(signatures)
}

SECP256K1 Credential Example​

Let’s make a payment input with:

  • TypeID: 9
  • signatures:
  • 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1e1d1f202122232425262728292a2b2c2e2d2f303132333435363738393a3b3c3d3e3f00
  • 0x404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5e5d5f606162636465666768696a6b6c6e6d6f707172737475767778797a7b7c7d7e7f00
[
TypeID <- 0x00000009
Signatures <- [
0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1e1d1f202122232425262728292a2b2c2e2d2f303132333435363738393a3b3c3d3e3f00,
0x404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5e5d5f606162636465666768696a6b6c6e6d6f707172737475767778797a7b7c7d7e7f00,
]
]
=
[
// Type ID
0x00, 0x00, 0x00, 0x09,
// length:
0x00, 0x00, 0x00, 0x02,
// sig[0]
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1e, 0x1d, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2e, 0x2d, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x00,
// sig[1]
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5e, 0x5d, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6e, 0x6d, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x00,
]

NFT Credential​

An NFT credential is the same as an secp256k1 credential with a different TypeID. The TypeID for an NFT credential is 0x0000000e.

Unsigned Transactions​

Unsigned transactions contain the full content of a transaction with only the signatures missing. Unsigned transactions have four possible types: CreateAssetTx, OperationTx, ImportTx, and ExportTx. They all embed BaseTx, which contains common fields and operations.

What Base Tx Contains​

A base tx contains a TypeID, NetworkID, BlockchainID, Outputs, Inputs, and Memo.

  • TypeID is the ID for this type. It is 0x00000000.
  • NetworkID is an int that defines which network this transaction is meant to be issued to. This value is meant to support transaction routing and is not designed for replay attack prevention.
  • BlockchainID is a 32-byte array that defines which blockchain this transaction was issued to. This is used for replay attack prevention for transactions that could potentially be valid across network or blockchain.
  • Outputs is an array of transferable output objects. Outputs must be sorted lexicographically by their serialized representation. The total quantity of the assets created in these outputs must be less than or equal to the total quantity of each asset consumed in the inputs minus the transaction fee.
  • Inputs is an array of transferable input objects. Inputs must be sorted and unique. Inputs are sorted first lexicographically by their TxID and then by the UTXOIndex from low to high. If there are inputs that have the same TxID and UTXOIndex, then the transaction is invalid as this would result in a double spend.
  • Memo Memo field contains arbitrary bytes, up to 256 bytes.

Gantt Base Tx Specification​

+--------------------------------------+-----------------------------------------+
| type_id : int | 4 bytes |
+---------------+----------------------+-----------------------------------------+
| network_id : int | 4 bytes |
+---------------+----------------------+-----------------------------------------+
| blockchain_id : [32]byte | 32 bytes |
+---------------+----------------------+-----------------------------------------+
| outputs : []TransferableOutput | 4 + size(outputs) bytes |
+---------------+----------------------+-----------------------------------------+
| inputs : []TransferableInput | 4 + size(inputs) bytes |
+---------------+----------------------+-----------------------------------------+
| memo : [256]byte | 4 + size(memo) bytes |
+---------------+----------------------+-----------------------------------------+
| 52 + size(outputs) + size(inputs) + size(memo) bytes |
+------------------------------------------------------+

Proto Base Tx Specification​

message BaseTx {
uint32 typeID = 1; // 04 bytes
uint32 network_id = 2; // 04 bytes
bytes blockchain_id = 3; // 32 bytes
repeated Output outputs = 4; // 04 bytes + size(outs)
repeated Input inputs = 5; // 04 bytes + size(ins)
bytes memo = 6; // 04 bytes + size(memo)
}

Base Tx Example​

Let’s make an base tx that uses the inputs and outputs from the previous examples:

  • TypeID: 0
  • NetworkID: 4
  • BlockchainID: 0xffffffffeeeeeeeeddddddddcccccccbbbbbbbbaaaaaaaa9999999988888888
  • Outputs:
    • "Example Transferable Output as defined above"
  • Inputs:
    • "Example Transferable Input as defined above"
  • Memo: 0x00010203
[
TypeID <- 0x00000000
NetworkID <- 0x00000004
BlockchainID <- 0xffffffffeeeeeeeeddddddddcccccccbbbbbbbbaaaaaaaa9999999988888888
Outputs <- [
0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859
]
Inputs <- [
0xf1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd15000000020000000700000003
]
Memo <- 0x00010203
]
=
[
// typeID
0x00, 0x00, 0x00, 0x00,
// networkID:
0x00, 0x00, 0x00, 0x04,
// blockchainID:
0xff, 0xff, 0xff, 0xff, 0xee, 0xee, 0xee, 0xee,
0xdd, 0xdd, 0xdd, 0xdd, 0xcc, 0xcc, 0xcc, 0xcc,
0xbb, 0xbb, 0xbb, 0xbb, 0xaa, 0xaa, 0xaa, 0xaa,
0x99, 0x99, 0x99, 0x99, 0x88, 0x88, 0x88, 0x88,
// number of outputs:
0x00, 0x00, 0x00, 0x01,
// transferable output:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
// number of inputs:
0x00, 0x00, 0x00, 0x01,
// transferable input:
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
0x00, 0x00, 0x00, 0x05, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x00, 0x00, 0x05,
0x00, 0x00, 0x00, 0x00, 0x07, 0x5b, 0xcd, 0x15,
0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x03,
// Memo length:
0x00, 0x00, 0x00, 0x04,
// Memo:
0x00, 0x01, 0x02, 0x03,
]

What Unsigned Create Asset Tx Contains​

An unsigned create asset tx contains a BaseTx, Name, Symbol, Denomination, and InitialStates. The TypeID is 0x00000001.

  • BaseTx
  • Name is a human readable string that defines the name of the asset this transaction will create. The name is not guaranteed to be unique. The name must consist of only printable ASCII characters and must be no longer than 128 characters.
  • Symbol is a human readable string that defines the symbol of the asset this transaction will create. The symbol is not guaranteed to be unique. The symbol must consist of only printable ASCII characters and must be no longer than 4 characters.
  • Denomination is a byte that defines the divisibility of the asset this transaction will create. For example, the AVAX token is divisible into billionths. Therefore, the denomination of the AVAX token is 9. The denomination must be no more than 32.
  • InitialStates is a variable length array that defines the feature extensions this asset supports, and the initial state of those feature extensions.

Gantt Unsigned Create Asset Tx Specification​

+----------------+----------------+--------------------------------------+
| base_tx : BaseTx | size(base_tx) bytes |
+----------------+----------------+--------------------------------------+
| name : string | 2 + len(name) bytes |
+----------------+----------------+--------------------------------------+
| symbol : string | 2 + len(symbol) bytes |
+----------------+----------------+--------------------------------------+
| denomination : byte | 1 bytes |
+----------------+----------------+--------------------------------------+
| initial_states : []InitialState | 4 + size(initial_states) bytes |
+----------------+----------------+--------------------------------------+
| size(base_tx) + size(initial_states) |
| + 9 + len(name) + len(symbol) bytes |
+--------------------------------------+

Proto Unsigned Create Asset Tx Specification​

message CreateAssetTx {
BaseTx base_tx = 1; // size(base_tx)
string name = 2; // 2 bytes + len(name)
name symbol = 3; // 2 bytes + len(symbol)
uint8 denomination = 4; // 1 bytes
repeated InitialState initial_states = 5; // 4 bytes + size(initial_states)
}

Unsigned Create Asset Tx Example​

Let’s make an unsigned base tx that uses the inputs and outputs from the previous examples:

  • BaseTx: "Example BaseTx as defined above with ID set to 1"
  • Name: Volatility Index
  • Symbol: VIX
  • Denomination: 2
  • InitialStates:
  • "Example Initial State as defined above"
[
BaseTx <- 0x0000000100000004ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa999999998888888800000001000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab085900000001f1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd150000000200000007000000030000000400010203
Name <- 0x0010566f6c6174696c69747920496e646578
Symbol <- 0x0003564958
Denomination <- 0x02
InitialStates <- [
0x0000000000000001000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// base tx:
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04,
0xff, 0xff, 0xff, 0xff, 0xee, 0xee, 0xee, 0xee,
0xdd, 0xdd, 0xdd, 0xdd,
0xcc, 0xcc, 0xcc, 0xcc, 0xbb, 0xbb, 0xbb, 0xbb,
0xaa, 0xaa, 0xaa, 0xaa, 0x99, 0x99, 0x99, 0x99,
0x88, 0x88, 0x88, 0x88, 0x00, 0x00, 0x00, 0x01,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59, 0x00, 0x00, 0x00, 0x01,
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
0x00, 0x00, 0x00, 0x05, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x00, 0x00, 0x05,
0x00, 0x00, 0x00, 0x00, 0x07, 0x5b, 0xcd, 0x15,
0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04,
0x00, 0x01, 0x02, 0x03
// name:
0x00, 0x10, 0x56, 0x6f, 0x6c, 0x61, 0x74, 0x69,
0x6c, 0x69, 0x74, 0x79, 0x20, 0x49, 0x6e, 0x64,
0x65, 0x78,
// symbol length:
0x00, 0x03,
// symbol:
0x56, 0x49, 0x58,
// denomination:
0x02,
// number of InitialStates:
0x00, 0x00, 0x00, 0x01,
// InitialStates[0]:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]

What Unsigned Operation Tx Contains​

An unsigned operation tx contains a BaseTx, and Ops. The TypeID for this type is 0x00000002.

Gantt Unsigned Operation Tx Specification​

+---------+------------------+-------------------------------------+
| base_tx : BaseTx | size(base_tx) bytes |
+---------+------------------+-------------------------------------+
| ops : []TransferableOp | 4 + size(ops) bytes |
+---------+------------------+-------------------------------------+
| 4 + size(ops) + size(base_tx) bytes |
+-------------------------------------+

Proto Unsigned Operation Tx Specification​

message OperationTx {
BaseTx base_tx = 1; // size(base_tx)
repeated TransferOp ops = 2; // 4 bytes + size(ops)
}

Unsigned Operation Tx Example​

Let’s make an unsigned operation tx that uses the inputs and outputs from the previous examples:

  • BaseTx: "Example BaseTx above" with TypeID set to 2
  • Ops: ["Example Transferable Op as defined above"]
[
BaseTx <- 0x0000000200000004ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa999999998888888800000001000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab085900000001f1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd150000000200000007000000030000000400010203
Ops <- [
0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f00000001f1e1d1c1b1a191817161514131211101f0e0d0c0b0a090807060504030201000000000050000000d0000000200000003000000070000303900000003431100000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// base tx:
0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xff,
0xee, 0xee, 0xee, 0xee, 0xdd, 0xdd, 0xdd, 0xdd,
0xcc, 0xcc, 0xcc, 0xcc, 0xbb, 0xbb, 0xbb, 0xbb,
0xaa, 0xaa, 0xaa, 0xaa, 0x99, 0x99, 0x99, 0x99,
0x88, 0x88, 0x88, 0x88, 0x00, 0x00, 0x00, 0x01,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59, 0x00, 0x00, 0x00, 0x01,
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
0x00, 0x00, 0x00, 0x05, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x00, 0x00, 0x05,
0x00, 0x00, 0x00, 0x00, 0x07, 0x5b, 0xcd, 0x15,
0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04,
0x00, 0x01, 0x02, 0x03
// number of operations:
0x00, 0x00, 0x00, 0x01,
// transfer operation:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x01, 0xf1, 0xe1, 0xd1, 0xc1,
0xb1, 0xa1, 0x91, 0x81, 0x71, 0x61, 0x51, 0x41,
0x31, 0x21, 0x11, 0x01, 0xf0, 0xe0, 0xd0, 0xc0,
0xb0, 0xa0, 0x90, 0x80, 0x70, 0x60, 0x50, 0x40,
0x30, 0x20, 0x10, 0x00, 0x00, 0x00, 0x00, 0x05,
0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x03,
0x43, 0x11, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61, 0xfb,
0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8, 0x34,
0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55, 0xc3,
0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e, 0xde,
0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89, 0x43,
0xab, 0x08, 0x59,
]

What Unsigned Import Tx Contains​

An unsigned import tx contains a BaseTx, SourceChain and Ins. * The TypeIDfor this type is 0x00000003.

  • BaseTx
  • SourceChain is a 32-byte source blockchain ID.
  • Ins is a variable length array of Transferable Inputs.

Gantt Unsigned Import Tx Specification​

+---------+----------------------+-----------------------------+
| base_tx : BaseTx | size(base_tx) bytes |
+-----------------+--------------+-----------------------------+
| source_chain : [32]byte | 32 bytes |
+---------+----------------------+-----------------------------+
| ins : []TransferIn | 4 + size(ins) bytes |
+---------+----------------------+-----------------------------+
| 36 + size(ins) + size(base_tx) bytes |
+--------------------------------------+

Proto Unsigned Import Tx Specification​

message ImportTx {
BaseTx base_tx = 1; // size(base_tx)
bytes source_chain = 2; // 32 bytes
repeated TransferIn ins = 3; // 4 bytes + size(ins)
}

Unsigned Import Tx Example​

Let’s make an unsigned import tx that uses the inputs from the previous examples:

  • BaseTx: "Example BaseTx as defined above", but with TypeID set to 3
  • SourceChain: 0x0000000000000000000000000000000000000000000000000000000000000000
  • Ins: "Example SECP256K1 Transfer Input as defined above"
[
BaseTx <- 0x0000000300000004ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa999999998888888800000001000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab085900000001f1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd150000000200000007000000030000000400010203
SourceChain <- 0x0000000000000000000000000000000000000000000000000000000000000000
Ins <- [
f1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd15000000020000000300000007,
]
]
=
[
// base tx:
0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xff,
0xee, 0xee, 0xee, 0xee, 0xdd, 0xdd, 0xdd, 0xdd,
0xcc, 0xcc, 0xcc, 0xcc, 0xbb, 0xbb, 0xbb, 0xbb,
0xaa, 0xaa, 0xaa, 0xaa, 0x99, 0x99, 0x99, 0x99,
0x88, 0x88, 0x88, 0x88, 0x00, 0x00, 0x00, 0x01,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59, 0x00, 0x00, 0x00, 0x01,
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
0x00, 0x00, 0x00, 0x05, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x00, 0x00, 0x05,
0x00, 0x00, 0x00, 0x00, 0x07, 0x5b, 0xcd, 0x15,
0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04,
0x00, 0x01, 0x02, 0x03
// source chain:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// input count:
0x00, 0x00, 0x00, 0x01,
// txID:
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
// utxoIndex:
0x00, 0x00, 0x00, 0x05,
// assetID:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
// input:
0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,
0x07, 0x5b, 0xcd, 0x15, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x07,
]

What Unsigned Export Tx Contains​

An unsigned export tx contains a BaseTx, DestinationChain, and Outs. The TypeID for this type is 0x00000004.

  • DestinationChain is the 32 byte ID of the chain where the funds are being exported to.
  • Outs is a variable length array of Transferable Outputs.

Gantt Unsigned Export Tx Specification​

+-------------------+---------------+--------------------------------------+
| base_tx : BaseTx | size(base_tx) bytes |
+-------------------+---------------+--------------------------------------+
| destination_chain : [32]byte | 32 bytes |
+-------------------+---------------+--------------------------------------+
| outs : []TransferOut | 4 + size(outs) bytes |
+-------------------+---------------+--------------------------------------+
| 36 + size(outs) + size(base_tx) bytes |
+---------------------------------------+

Proto Unsigned Export Tx Specification​

message ExportTx {
BaseTx base_tx = 1; // size(base_tx)
bytes destination_chain = 2; // 32 bytes
repeated TransferOut outs = 3; // 4 bytes + size(outs)
}

Unsigned Export Tx Example​

Let’s make an unsigned export tx that uses the outputs from the previous examples:

  • BaseTx: "Example BaseTx as defined above", but with TypeID set to 4
  • DestinationChain: 0x0000000000000000000000000000000000000000000000000000000000000000
  • Outs: "Example SECP256K1 Transfer Output as defined above"
[
BaseTx <- 0x0000000400000004ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa999999998888888800000001000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab085900000001f1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd150000000200000007000000030000000400010203
DestinationChain <- 0x0000000000000000000000000000000000000000000000000000000000000000
Outs <- [
000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859,
]
]
=
[
// base tx:
0x00, 0x00, 0x00, 0x04
0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xff,
0xee, 0xee, 0xee, 0xee, 0xdd, 0xdd, 0xdd, 0xdd,
0xcc, 0xcc, 0xcc, 0xcc, 0xbb, 0xbb, 0xbb, 0xbb,
0xaa, 0xaa, 0xaa, 0xaa, 0x99, 0x99, 0x99, 0x99,
0x88, 0x88, 0x88, 0x88, 0x00, 0x00, 0x00, 0x01,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59, 0x00, 0x00, 0x00, 0x01,
0xf1, 0xe1, 0xd1, 0xc1, 0xb1, 0xa1, 0x91, 0x81,
0x71, 0x61, 0x51, 0x41, 0x31, 0x21, 0x11, 0x01,
0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00,
0x00, 0x00, 0x00, 0x05, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x00, 0x00, 0x05,
0x00, 0x00, 0x00, 0x00, 0x07, 0x5b, 0xcd, 0x15,
0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04,
0x00, 0x01, 0x02, 0x03
// destination_chain:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// outs[] count:
0x00, 0x00, 0x00, 0x01,
// assetID:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
// output:
0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02,
0x51, 0x02, 0x5c, 0x61, 0xfb, 0xcf, 0xc0, 0x78,
0xf6, 0x93, 0x34, 0xf8, 0x34, 0xbe, 0x6d, 0xd2,
0x6d, 0x55, 0xa9, 0x55, 0xc3, 0x34, 0x41, 0x28,
0xe0, 0x60, 0x12, 0x8e, 0xde, 0x35, 0x23, 0xa2,
0x4a, 0x46, 0x1c, 0x89, 0x43, 0xab, 0x08, 0x59,
]

Signed Transaction​

A signed transaction is an unsigned transaction with the addition of an array of credentials.

What Signed Transaction Contains​

A signed transaction contains a CodecID, UnsignedTx, and Credentials.

  • CodecID The only current valid codec id is 00 00.
  • UnsignedTx is an unsigned transaction, as described above.
  • Credentials is an array of credentials. Each credential will be paired with the input in the same index at this credential.

Gantt Signed Transaction Specification​

+---------------------+--------------+------------------------------------------------+
| codec_id : uint16 | 2 bytes |
+---------------------+--------------+------------------------------------------------+
| unsigned_tx : UnsignedTx | size(unsigned_tx) bytes |
+---------------------+--------------+------------------------------------------------+
| credentials : []Credential | 4 + size(credentials) bytes |
+---------------------+--------------+------------------------------------------------+
| 6 + size(unsigned_tx) + len(credentials) bytes |
+------------------------------------------------+

Proto Signed Transaction Specification​

message Tx {
uint16 codec_id = 1; // 2 bytes
UnsignedTx unsigned_tx = 2; // size(unsigned_tx)
repeated Credential credentials = 3; // 4 bytes + size(credentials)
}

Signed Transaction Example​

Let’s make a signed transaction that uses the unsigned transaction and credentials from the previous examples.

  • CodecID: 0
  • UnsignedTx: 0x0000000100000004ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa999999998888888800000001000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab085900000001f1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd150000000200000007000000030000000400010203
  • Credentials 0x0000000900000002000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1e1d1f202122232425262728292a2b2c2e2d2f303132333435363738393a3b3c3d3e3f00404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5e5d5f606162636465666768696a6b6c6e6d6f707172737475767778797a7b7c7d7e7f00
[
CodecID <- 0x0000
UnsignedTx <- 0x0000000100000004ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa999999998888888800000001000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab085900000001f1e1d1c1b1a191817161514131211101f0e0d0c0b0a09080706050403020100000000005000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0000000500000000075bcd150000000200000007000000030000000400010203
Credentials <- [
0x0000000900000002000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1e1d1f202122232425262728292a2b2c2e2d2f303132333435363738393a3b3c3d3e3f00404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5e5d5f606162636465666768696a6b6c6e6d6f707172737475767778797a7b7c7d7e7f00,
]
]
=
[
// Codec ID
0x00, 0x00,
// unsigned transaction:
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04,
0xff, 0xff, 0xff, 0xff, 0xee, 0xee, 0xee, 0xee,
0xdd, 0xdd, 0xdd, 0xdd, 0xcc, 0xcc, 0xcc, 0xcc,
0xbb, 0xbb, 0xbb, 0xbb, 0xaa, 0xaa, 0xaa, 0xaa,
0x99, 0x99, 0x99, 0x99, 0x88, 0x88, 0x88, 0x88,
0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0x31,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02,
0x51, 0x02, 0x5c, 0x61, 0xfb, 0xcf, 0xc0, 0x78,
0xf6, 0x93, 0x34, 0xf8, 0x34, 0xbe, 0x6d, 0xd2,
0x6d, 0x55, 0xa9, 0x55, 0xc3, 0x34, 0x41, 0x28,
0xe0, 0x60, 0x12, 0x8e, 0xde, 0x35, 0x23, 0xa2,
0x4a, 0x46, 0x1c, 0x89, 0x43, 0xab, 0x08, 0x59,
0x00, 0x00, 0x00, 0x01, 0xf1, 0xe1, 0xd1, 0xc1,
0xb1, 0xa1, 0x91, 0x81, 0x71, 0x61, 0x51, 0x41,
0x31, 0x21, 0x11, 0x01, 0xf0, 0xe0, 0xd0, 0xc0,
0xb0, 0xa0, 0x90, 0x80, 0x70, 0x60, 0x50, 0x40,
0x30, 0x20, 0x10, 0x00, 0x00, 0x00, 0x00, 0x05,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,
0x07, 0x5b, 0xcd, 0x15, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x04, 0x00, 0x01, 0x02, 0x03
// number of credentials:
0x00, 0x00, 0x00, 0x01,
// credential[0]:
0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x02,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1e, 0x1d, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2e, 0x2d, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x00, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46,
0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e,
0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56,
0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5e, 0x5d,
0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6e, 0x6d,
0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76,
0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e,
0x7f, 0x00,

UTXO​

A UTXO is a standalone representation of a transaction output.

What UTXO Contains​

A UTXO contains a CodecID, TxID, UTXOIndex, AssetID, and Output.

  • CodecID The only valid CodecID is 00 00
  • TxID is a 32-byte transaction ID. Transaction IDs are calculated by taking sha256 of the bytes of the signed transaction.
  • UTXOIndex is an int that specifies which output in the transaction specified by TxID that this utxo was created by.
  • AssetID is a 32-byte array that defines which asset this utxo references.
  • Output is the output object that created this utxo. The serialization of Outputs was defined above.

Gantt UTXO Specification​

+--------------+----------+-------------------------+
| codec_id : uint16 | 2 bytes |
+--------------+----------+-------------------------+
| tx_id : [32]byte | 32 bytes |
+--------------+----------+-------------------------+
| output_index : int | 4 bytes |
+--------------+----------+-------------------------+
| asset_id : [32]byte | 32 bytes |
+--------------+----------+-------------------------+
| output : Output | size(output) bytes |
+--------------+----------+-------------------------+
| 70 + size(output) bytes |
+-------------------------+

Proto UTXO Specification​

message Utxo {
uint16 codec_id = 1; // 02 bytes
bytes tx_id = 2; // 32 bytes
uint32 output_index = 3; // 04 bytes
bytes asset_id = 4; // 32 bytes
Output output = 5; // size(output)
}

UTXO Example​

Let’s make a UTXO from the signed transaction created above:

  • CodecID: 0
  • TxID: 0xf966750f438867c3c9828ddcdbe660e21ccdbb36a9276958f011ba472f75d4e7
  • UTXOIndex: 0 = 0x00000000
  • AssetID: 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
  • Output: "Example SECP256K1 Transferable Output as defined above"
[
CodecID <- 0x0000
TxID <- 0xf966750f438867c3c9828ddcdbe660e21ccdbb36a9276958f011ba472f75d4e7
UTXOIndex <- 0x00000000
AssetID <- 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
Output <- 0x000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859
]
=
[
// Codec ID:
0x00, 0x00,
// txID:
0xf9, 0x66, 0x75, 0x0f, 0x43, 0x88, 0x67, 0xc3,
0xc9, 0x82, 0x8d, 0xdc, 0xdb, 0xe6, 0x60, 0xe2,
0x1c, 0xcd, 0xbb, 0x36, 0xa9, 0x27, 0x69, 0x58,
0xf0, 0x11, 0xba, 0x47, 0x2f, 0x75, 0xd4, 0xe7,
// utxo index:
0x00, 0x00, 0x00, 0x00,
// assetID:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
// output:
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23,
0x24, 0x25, 0x26, 0x27,
]

GenesisAsset​

An asset to be issued in an instance of the AVM's Genesis

What GenesisAsset Contains​

An instance of a GenesisAsset contains an Alias, NetworkID, BlockchainID, Outputs, Inputs, Memo, Name, Symbol, Denomination, and InitialStates.

  • Alias is the alias for this asset.
  • NetworkID defines which network this transaction is meant to be issued to. This value is meant to support transaction routing and is not designed for replay attack prevention.
  • BlockchainID is the ID (32-byte array) that defines which blockchain this transaction was issued to. This is used for replay attack prevention for transactions that could potentially be valid across network or blockchain.
  • Outputs is an array of transferable output objects. Outputs must be sorted lexicographically by their serialized representation. The total quantity of the assets created in these outputs must be less than or equal to the total quantity of each asset consumed in the inputs minus the transaction fee.
  • Inputs is an array of transferable input objects. Inputs must be sorted and unique. Inputs are sorted first lexicographically by their TxID and then by the UTXOIndex from low to high. If there are inputs that have the same TxID and UTXOIndex, then the transaction is invalid as this would result in a double spend.
  • Memo is a memo field that contains arbitrary bytes, up to 256 bytes.
  • Name is a human readable string that defines the name of the asset this transaction will create. The name is not guaranteed to be unique. The name must consist of only printable ASCII characters and must be no longer than 128 characters.
  • Symbol is a human readable string that defines the symbol of the asset this transaction will create. The symbol is not guaranteed to be unique. The symbol must consist of only printable ASCII characters and must be no longer than 4 characters.
  • Denomination is a byte that defines the divisibility of the asset this transaction will create. For example, the AVAX token is divisible into billionths. Therefore, the denomination of the AVAX token is 9. The denomination must be no more than 32.
  • InitialStates is a variable length array that defines the feature extensions this asset supports, and the initial state of those feature extensions.

Gantt GenesisAsset Specification​

+----------------+----------------------+--------------------------------+
| alias : string | 2 + len(alias) bytes |
+----------------+----------------------+--------------------------------+
| network_id : int | 4 bytes |
+----------------+----------------------+--------------------------------+
| blockchain_id : [32]byte | 32 bytes |
+----------------+----------------------+--------------------------------+
| outputs : []TransferableOutput | 4 + size(outputs) bytes |
+----------------+----------------------+--------------------------------+
| inputs : []TransferableInput | 4 + size(inputs) bytes |
+----------------+----------------------+--------------------------------+
| memo : [256]byte | 4 + size(memo) bytes |
+----------------+----------------------+--------------------------------+
| name : string | 2 + len(name) bytes |
+----------------+----------------------+--------------------------------+
| symbol : string | 2 + len(symbol) bytes |
+----------------+----------------------+--------------------------------+
| denomination : byte | 1 bytes |
+----------------+----------------------+--------------------------------+
| initial_states : []InitialState | 4 + size(initial_states) bytes |
+----------------+----------------------+--------------------------------+
| 59 + size(alias) + size(outputs) + size(inputs) + size(memo) |
| + len(name) + len(symbol) + size(initial_states) bytes |
+------------------------------------------------------------------------+

Proto GenesisAsset Specification​

message GenesisAsset {
string alias = 1; // 2 bytes + len(alias)
uint32 network_id = 2; // 04 bytes
bytes blockchain_id = 3; // 32 bytes
repeated Output outputs = 4; // 04 bytes + size(outputs)
repeated Input inputs = 5; // 04 bytes + size(inputs)
bytes memo = 6; // 04 bytes + size(memo)
string name = 7; // 2 bytes + len(name)
name symbol = 8; // 2 bytes + len(symbol)
uint8 denomination = 9; // 1 bytes
repeated InitialState initial_states = 10; // 4 bytes + size(initial_states)
}

GenesisAsset Example​

Let’s make a GenesisAsset:

  • Alias: asset1
  • NetworkID: 12345
  • BlockchainID: 0x0000000000000000000000000000000000000000000000000000000000000000
  • Outputs: []
  • Inputs: []
  • Memo: 2Zc54v4ek37TEwu4LiV3j41PUMRd6acDDU3ZCVSxE7X
  • Name: asset1
  • Symbol: MFCA
  • Denomination: 1
  • InitialStates:
  • "Example Initial State as defined above"
[
Alias <- 0x617373657431
NetworkID <- 0x00003039
BlockchainID <- 0x0000000000000000000000000000000000000000000000000000000000000000
Outputs <- []
Inputs <- []
Memo <- 0x66x726f6d20736e6f77666c616b6520746f206176616c616e636865
Name <- 0x617373657431
Symbol <- 0x66x726f6d20736e6f77666c616b6520746f206176616c616e636865
Denomination <- 0x66x726f6d20736e6f77666c616b6520746f206176616c616e636865
InitialStates <- [
0x0000000000000001000000070000000000003039000000000000d431000000010000000251025c61fbcfc078f69334f834be6dd26d55a955c3344128e060128ede3523a24a461c8943ab0859
]
]
=
[
// asset alias len:
0x00, 0x06,
// asset alias:
0x61, 0x73, 0x73, 0x65, 0x74, 0x31,
// network_id:
0x00, 0x00, 0x30, 0x39,
// blockchain_id:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// output_len:
0x00, 0x00, 0x00, 0x00,
// input_len:
0x00, 0x00, 0x00, 0x00,
// memo_len:
0x00, 0x00, 0x00, 0x1b,
// memo:
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x73, 0x6e, 0x6f, 0x77, 0x66, 0x6c, 0x61,
0x6b, 0x65, 0x20, 0x74, 0x6f, 0x20, 0x61, 0x76, 0x61, 0x6c, 0x61, 0x6e, 0x63, 0x68, 0x65,
// asset_name_len:
0x00, 0x0f,
// asset_name:
0x6d, 0x79, 0x46, 0x69, 0x78, 0x65, 0x64, 0x43, 0x61, 0x70, 0x41, 0x73, 0x73, 0x65, 0x74,
// symbol_len:
0x00, 0x04,
// symbol:
0x4d, 0x46, 0x43, 0x41,
// denomination:
0x07,
// number of InitialStates:
0x00, 0x00, 0x00, 0x01,
// InitialStates[0]:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xd4, 0x31, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x02, 0x51, 0x02, 0x5c, 0x61,
0xfb, 0xcf, 0xc0, 0x78, 0xf6, 0x93, 0x34, 0xf8,
0x34, 0xbe, 0x6d, 0xd2, 0x6d, 0x55, 0xa9, 0x55,
0xc3, 0x34, 0x41, 0x28, 0xe0, 0x60, 0x12, 0x8e,
0xde, 0x35, 0x23, 0xa2, 0x4a, 0x46, 0x1c, 0x89,
0x43, 0xab, 0x08, 0x59,
]